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Abstract

The present work develops a quantitative theory of the self-thermal-plastic response of NiTi shape memory alloy
actuated metal matrix composite materials. Model calculations are compared with existing experimental data obtained
from a testing procedure consisting of an initial room temperature, 5% tensile elongation process, and a subsequent
room temperature to 120°C unconstrained (external stress free) heating process. During the unconstrained heating
process the composite fiber actuators attempt to recover pseudo-plastic strain imparted during the room temperature
tensile prestrain process. As the temperature increases, the fiber stress—temperature state enters increasing phase
transformation intensity, resulting in strong increases in fiber longitudinal tensile stress, matrix longitudinal com-
pressive stress and composite compressive longitudinal external strain. Sufficient temperature brings the matrix stress
state to the point of plastic yield. The composite then exhibits a very unusual, self-thermal-plastic compression re-
sponse, recovering approximately 2.2% strain. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The technical utility of shape memory alloys stems from the ability of these materials to suffer reversible
crystallographic transformations, and thereby recover large amounts of strain or exert large forces. The
shape memory alloy material with the highest thermal-mechanical performance, and hence the highest
applications potential is near equi-atomic NiTi. The basic crystallography of this material and basic
thermal-mechanical behavior of these alloys has been studied both experimentally (Dautovich and Purdy,
1965; de Lange and Ziderveld, 1968; Knowles and Smith, 1981; Michal and Sinclair, 1981; Dunand et al.,
1996; Jackson et al., 1972; Ling and Kaplow, 1980; Wayman, 1981; Otsuka and Shimizu, 1986; Miyazaki
and Otsuka, 1986; Shaw and Kyriakides, 1995; Bo and Lagoudas, 1999) and theoretically (Tanaka and
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Nagaki, 1982; Liang and Rogers, 1990; Brinson, 1993; Brinson and Huang, 1996; Bo and Lagoudas, 1999)
for many years.

Recently, attention has been focused on using NiTi shape memory alloys as fiber actuators within metal
based smart composite materials (Wei et al., 1998). Early theoretical modeling efforts predicted the mac-
roscopic thermal-mechanical behavior of various forms of such composites (Boyd and Lagoudas, 1994;
Armstrong and Kino, 1995; Armstrong, 1996; Aboudi, 1997), while a set of pioneering experimental ef-
forts explored processing methods and basic macroscopic thermal-mechanical behavior (Taya et al., 1993;
Furuya et al., 1993; Armstrong and Kino, 1995; Hamada et al., 1998). Three experimental investigations
proved in particular that an appropriately processed, room temperature prestrained NiTi shape memory
fiber actuated aluminum metal matrix composite will exhibit large compressive strains during free heating.
In the first of these, Armstrong and Kino (1995) subjected an experimental NiTi fiber 6061 aluminum alloy
matrix composite to an initial room temperature prestrain treatment, a subsequent unconstrained heating
process, and a final elevated temperature tensile process. The composite exhibited unusual hardening be-
havior during the prestrain process, a shape memory induced weak nonlinear thermal contraction during
the unconstrained heating process, and a significantly increased flow strength at elevated temperature as
compared to both the homogeneous matrix alloy and the room temperature composite. Armstrong and
Lorentzen (1997), and later, Armstrong et al. (1998) significantly extended this work by investigating the
room temperature prestrain followed by unconstrained heating behavior of a NiTi fiber 6082 aluminum
matrix composite with in situ neutron diffraction. They further presented a one-dimensional thermal strain,
internal stress and fiber phase transformation composite model, with parameters identified from extracted
single fiber tests.

The present work extends beyond these earlier efforts to develop a quantitative theory of the self-
thermal-plastic response of NiTi shape memory alloy actuated metal matrix composite materials. Model
calculations are compared with recently obtained novel experimental data (Armstrong and Lorentzen,
2000). The present theory may be used by materials researchers for the analysis of experimental shape active
metal matrix composite materials, and by mechanical engineers for the design of large deformation shape
active structures and machine elements.

2. Modeling the multiaxial constitutive behavior of NiTi
2.1. NiTi transformation behavior

We begin our analysis by adopting an approach where austenite to martensite, or martensite to austenite
phase transformation processes in NiTi are direct consequences of stress and temperature dependent
transformation intensity distributions. Various simple stress—temperature paths may be imagined through a
phase transformation domain connecting homogeneous end states. Transformation contours are defined as
the locus of stress—temperature points at which particular partial phase contents first occur. An increment
of nontrivial phase transformation may only occur during a forward stress—temperature displacement, a
forward displacement being defined as one that penetrates a transformation contour for the first time in
a given process. No phase transformation occurs if the stress—temperature state is displaced parallel to a
transformation contour, or if the stress—temperature state suffers a reverse displacement.

We will restrict our attention to martensite to austenite phase recovery processes with forward variations
in stress and temperature. By convention, we describe the phase content of NiTi by the martensite fraction,
&. The martensite fraction is equal to 1 in a fully martensitic condition, and equal to 0 in a fully austenitic
condition (Liang and Rogers, 1990).

Any change in martensite fraction is the sum of martensite fraction increments due to changes in
temperature, d7, and stress, do'.
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The phase transformation increment due to a forward increment of stress during a M — A (martensite
to austenite) shape recovery transformation is the product of the M — A transformation intensity with the

pseudo-temperature increment da'/Ca,

2
=
o¢ £ —(T—Aa—é’—) da'
__g do’ = =0 exp - — (2)
Gl VT /52 Sa Ca
where &' is the fiber stress, T is the temperature, & is the initial martensite fraction, Cy is the stress—

temperature slope of the M — A mean transformation line, 4, is the M — A mean transformation line zero
stress intercept, and s, is the M — A distribution width parameter. Similarly, the martensite fraction in-
crement due to a forward increment in temperature is the product of the martensite to austenite trans-
formation intensity with the temperature increment d7.

aédT:— S0 exp _(T_Aa_g—’:y dr
or VT\/Sa Sa

3)

The total strain in the NiTi fiber is the sum of the fiber elastic mechanical, thermal and phase trans-
formation strains,
p_ da'

de = 4 oedT + g, dE 4

E{&} P (4)

where ¢ is the uniaxial strain recovered during a constant stress transformation from a completely stress

induced martensite phase (¢ = 1) to a fully austenite phase (¢ = 0). Finally, we assume that the NiTi elastic
modulus is linear in martensite fraction.

E{é} = Eaus + é(Emar - Eaus) (5)
2.2. Generalization to multiaxial behavior

The one-dimensional incremental description of the shape memory alloy transformation behavior pre-
sented in the preceding section may be generalized to a multiaxial description by assuming a temperature
and J, stress invariant dependent distributed transformation yield function,

. (T7Jf)7 Jf 1 lof/ (6)

i

where a is the fiber stress deviation. The fiber transformatlon intensities of Egs. (2) and (3) will now be
dependent on temperature and von Mises effective stress, 6" (3Jf)l /2. Martensite to austenite transfor-
mation occurs when dy < 0, neutral transformation occurs if dy = 0, and elastic loading occurs if dy > 0 in
a way that is similar to conventional isotropic hardening plasticity. The transformation function associates
a forward transformation intensity to every 10-dimensional stress—temperature coordinate. Fig. 1 shows a
map of the martensite to austenite distributed transformation yield function in principle stress space. The
object is four dimensional in principal stress space, expanding linearly with increases in temperature.

Mechanical stability requires that the incremental transformation strain tensor is at all times parallel to
the transformation function divergence.

de = d2 aayf (7)
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Fig. 1. Projection of the four-dimensional (one temperature and three principle stress coordinates) distributed martensite to austenite
transformation intensity in stress space. The bold central line corresponds to a hydrostatic stress state. An increase in temperature
results in the uniform radial expansion of the cylindrical transformation intensity distribution.

Eq. (8) may now be substituted into the von Mises effective strain relation,

e = /3 (aefdet) (8)

to identify dA.

dgft
) — J3 7
di= \/; [ (9)

§
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The multiaxial transformation strain is obtained by substituting the uniaxial transformation strain in-
crement of the previous section,

, of ¢ 0O
ft __ f
de" = ¢, ﬁdo’ +a—TdT (10)

into Egs. (7) and (9).
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i
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def = — (11)
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3. Modeling the thermal-mechanical behavior of a NiTi fiber actuated metal matrix composite

We now use the results of the previous sections to predict the coupled internal stress, phase transfor-
mation and external strain behavior of a model shape memory alloy fiber reinforced elastic—plastic metal
matrix composite. The complex nonlinear behavior of this material system requires an incremental ap-
proach.
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3.1. Uniform stress model

The present study is directed at a composite with long, parallel fibers in the x3 direction, we will use a
modified permutation notation for the six independent components of the stress and strain tensors and their
increments.

g = [011, 022, 033, 012, 013, Uza]T (12)

&= [8117 €2, €33, 2612, 2813, 2823]T (13)

We will approximate the complicated local stress behavior of an actual composite by a simplified set of
uniform stress relations (Dvorak and Bahei-El-Din, 1982). We first assume that the external average normal
stress parallel to the fibers is given by the volume weighted sum of the individual fiber and matrix fiber
parallel normal stresses,

do = crdaly + cmdo (14)

where the superscripts ext, f and m, as throughout this paper, denote external, fiber and matrix, ¢ is the
fiber volume fraction, ¢, is the matrix volume fraction, and ¢; + ¢, = 1. All other stresses are assumed to be

uniform between phases.
do dafi =daj}, ij#33 (15)

l./:

The individual phase stresses may be written as the product of a stress concentration tensor and the
average external stress, these relations are equally applicable to elastic conditions or to conditions with fiber
transformation and matrix plasticity.

de' = Brdo®™, do™ = B, do™ (16)
By Egs. (14) and (15), the stress concentration tensors obey a general volume equilibration,
Cfo + CmBm =1 (17)

where [ is the identity matrix.

3.2. Elastic matrix behavior
Under purely elastic conditions the incremental stress in either the fiber or the matrix may be directly
obtained from the incremental strain.
do' = L de’, do™ = Lp.de™ (18)

Inversion of the fiber and matrix elastic tensors allows the incremental strain to be directly obtained
from the incremental stress,

de’ = M. ddo', de™ = M. do™ (19)
where
M =L and My, =L} (20)

We now assume that the fiber and matrix total strains are the same in the fiber direction,

dey = def, + delly + dTo" = defy + dTo™ (21)
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where dT is the incremental temperature change, and of, o™ are the isotropic fiber and matrix coefficients of
thermal expansion respectively, while all other external average strains are obtained as volume weighted
sums of the individual phase strains.

ded™ = cp(delf + dell + o' dT) + e (def® + o™dT), i=1,2 (22)
det = (d.cre + d?ﬁ) +em(de), i =12,13,23 (23)
The fiber stress increment is then obtained from Egs. (1)—(3), (6), (8), (11), (14)—(16), (18), and (21)—(23).
T
defy +dT (o' — o™
{do"} = [B]{do™} + = o T dT(e —a ) 0.0,0 (24)
M35 + (DM

where B, the fiber elastic stress concentration tensor, is written

1 0 0 0 0 0
o 1 0 0 0 0
BY, By By By By By

Be=1% 09 0o 1 0 0 (25)
0 0 0 0 1 0
0 0 0 0 0 1

where

Mfe_Mme

R 26)
3 7 on 33

. Mfe_Mme

B = h 27
33 7 o33

g M (28)

3=

__Aqfe __ cf pqme
ML — M3

Mfe — Mme
By = — (29)
_M33 - ZMB

fe me
M35 — M35

By =B (30)
R Yy

f
Bfe _ M32 _Mll;ée (31)
36 T _Mfe — & pgqme
3 o33
The fiber stress increment is now written in terms of a typically unknown fiber effective stress increment
and a typically known external applied stress and temperature increment. The correct fiber effective stress
increment balances a first order Taylor expansion of the fiber stress increment.

oa' oa' oG" g’ oa' oG’
d do? dot d d
6611 ‘711 6622 Oy + X O3t da", ‘712 +to5 o 013 tar

r
Glo
Once the fiber effective stress increment is known, the fiber stress increment is calculated from Eq. (24),
and the matrix stress increment is given by

do' = dob, (32)

f
003
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T
defy +dT(of — om)
de™} = [Bpe]{de™} + ¢ 0,0,—2 ,0,0,0 33
where By, the matrix elastic stress concentration tensor, is written
1 0 0 0 0 0
0 1 0 0 0 0
By BY BY By BY BY
Bme 0 0 0 1 0 0 (34)
0 0 0 0 1 0
0 0 0 0 0 1
Mfe — Mme
BY = (35)
DM+ M
Mfe — Mme
Bg“; =3 321"3 32me (36)
DM+ M
1 fe
e o« M
By = : (37)

< fe me
a M5+ M

ME — Mg

Bl = VY (38)
o M3 33
M — b

Bme _
35 T ¢ fe me
o ME + M3

(39)

Mfe — Mme
B = ey (40)
c_rM33 +M33

The martensite fraction increment is obtained from Egs. (1)—(3), and the external strain increment is
given by Eqgs. (22) and (23). The applied stress, temperature, fiber stress, fiber effective stress, matrix stress,
fiber martensite fraction, fiber elastic modulus, and composite external strain are then updated in prepa-
ration for the solution of the next increment.

3.3. Plastic matrix behavior
We will assume that the initial yielding of the composite matrix is well described by a von Mises type
yield function,
f= %a;‘,a;‘, — K (41)
where ag‘/ is the matrix stress deviation, matrix flow first occurs when f = 0, and k is equal to the yield stress
under pure torsion. We make the further assumption that the matrix hardens kinematically in the manner

proposed by Ziegler (1959). This means that each increment of plastic flow occurs on a yield function
surface which is able to translate in stress space.

f(a™ =) =0 (42)
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The yield surface uniformly translates in the direction of the vector that joins the instantaneous center i
with the matrix stress o™.

dy = du(a™ — ) (43)

the matrix stress state must remain on the yield surface after the loading increment.

of 17
{aa—fm} (de™ —dy) =0 (44)
du may then be obtained by substitution of Eq. (43) into Eq. (44).
AT gom
du = {601'# )
{&=} (™ =)

Mechanical stability requires that each increment of matrix plastic strain be orthogonal to the existing
matrix yield surface.

of
mp __
de;” = da 87 (46)

The matrix incremental plastic strain, de;” is assumed to be proportional to the projection of doj} on the
exterior normal of the yield surface (Ziegler, 1959).

(da - cdemp) o =0 (47)

Substituting Eq. (46) into Eq. (47) identifies d/,

, aam} do™ ]
A = | 2 2 (48)
l LY %)

The flow parameter, ¢, may be referenced to experiment by the substitution of the plastic strain incre-
ment, obtained by the substitution of Eq. (48) into Eq. (46), into the matrix von Mises effective strain.

de™ = | [X(def defr) ' (49)

The division of the von Mises incremental effective stress,

do" = \fa(ao acy) " (50)

by the von Mises effective strain for processes in which the stress increment is parallel to the yield function
normal identifies the constant ¢,

de™
@:%C’:Hm (51)

as two-thirds the tangential modulus, H,,. The incremental matrix plastic strain may now be written as a
direct function of existing stress state, stress increment and hardening parameter,

() — [ AgEb 1o (£} (52)

o) ek} ) L

The instantaneous matrix plastic compliance defined by
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{de™} = [M™|{da"} (53)
is obtained by the partial differentiation of the incremental matrix plastic strain.
og"?
MP = 54
i 60';“ ( )

We again require the fiber and matrix total strains to be identical in the fiber direction,
deS = def + dell, + of dT = del¥ + dei¥ + o™ dT (55)

while all other external average strains are obtained as volume weighted sums of the individual phase
strains.

de™ = cp(de® + delt + o' dT) + e (ded + de® + o™dT), i=1,2 (56)
des™ = cr(des + defy) + em(def) +dey”),  ij =12,13,23 (57)
The fiber stress may then be identified using Egs. (1)-(3), (6), (8), (11), (14)—(16), (49)—(53) and (55)—(57).

_ ft f _ m T
fdo')y = (B (o™} + § 0,0, I AT Z00) g g (58)
M33 + (M33 +M33 )

Cm

where By, the fiber stress concentration tensor, is written

1 0 0 0 0 0
O 1 0 0 0 0
s B B B, B
Bi=1% 0o o0 1 0 0 (59)
O 0 0 0 1 0
0O 0 0 0 0 1
where,

fe me mp

My — M3 — M,
T _agqfe o ‘me mp
M3§ — 2 (M5 + M33)

fe me mp

M5 — M3 — M,
T _agqfe o me mp
M33 Cm (M33 +M33 )

¢ — o (M3 + M)
B33 = fe cf e mp (62)
_M33 __](M;I% +M33 )

Ci

Mfe — Mme _ MmP
Bg4 _ 10834 - 34 — 34 . (63)
7M33 - (M33 +M33 )

Cm

fe me mp
]\435 — M35 — M35
- fe cr me mp
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As in the elastic matrix case, the fiber stress increment is now written in terms of a generally unknown
fiber effective stress increment, and generally known external applied stress and temperature increments.
The correct fiber effective stress increment balances a first order Taylor expansion of the fiber stress in-
crement.

05" o' . o5 o' o' o5t

def = 6 da“ @622 doy, + 6 d(rn—&—a " d012 d(r13 % f d023 (66)

Once the fiber effective stress increment is known, the fiber stress increment is calculated from Eq. (58),
and the matrix stress increment may be directly obtained,

T

d ft dr f _ ,m

{do™} = [Bul{do™} + 40,0, 55 <:e “n?p,o,o,o (67)
TTM33 +M33 +M33

where B,,, the matrix stress concentration tensor, is written

1 0 0 0 0 0
O 1 0 0 0 0
s By oy By By B
Ba=1% 0 0 1 0 o0 (68)
O 0 0 0 1 0
0O 0 0 0 0 1

Mfe — Mme _Mmp
Bg} — = 3lfe 31me 3lmp (69)
M5 + M+ My

mo M3f§ - M3° —M;gp
832 T cm pgfe me mp (70)
M5+ M+ My,

1 aqfe
Bm =- cr 33 = (71)
BT M+ M MY
—_Mrmp
Bg}t = T ~ mp (72)
Lm M € + M’?’;C + M’;3
—_Mmp
Br3nS = ¢ fe = mp (73)
@ ME + M3 + M3,
m —Msg”
By = » (74)

cm A ffe me mp
o M+ M+ My,

The martensite fraction increment is again obtained from Egs. (1)—(3), and the external strain increment
is given by Eq. (57). The applied stress, temperature, fiber stress, fiber effective stress, matrix stress, fiber
martensite fraction, fiber elastic modulus, and composite external strain are then updated in preparation for
the solution of the next increment.
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4. Comparisons with experiment

The theory developed in the previous section may now be used to model the thermal-mechanical be-
havior of NiTi shape memory alloy fiber actuated aluminum metal matrix composites. Specifically, we will
use the present theory to model the self-thermal-plastic compression behavior of a prestrained composite
during an unconstrained (external stress free) heating process in order to obtain comparisons between
calculated results and existing experimental measurements.

4.1. Experimental materials, testing procedures and results

Armstrong and Lorentzen have recently obtained the first experimental confirmation of self-thermal-
plastic behavior in a consolidated metal matrix composite (Armstrong and Lorentzen, 2000). In this study,
three 50.7 at.% NiTi actuated 6082-T4 aluminum metal matrix composite specimens, and two homoge-
neous 6082-T4 control specimens were produced from a single hot pressing treatment. Image analysis of a
composite specimen indicated a fiber volume fraction of approximately 14.5%. Each specimen was sub-
jected to a testing procedure consisting of an initial room temperature, 5% tensile elongation—unloading
process, and a subsequent room temperature to 120°C unconstrained (external stress free) heating process.
During the tensile process, the applied stress was periodically reduced by approximately 20 MPa to halt
straining, at which point in situ neutron diffraction measurements were made. The load reductions were
made at approximately every 25 MPa during the steep portion of the tensile loading, and at approximately
every 0.5% strain during stabilized plastic straining. Fig. 2(a) shows that the linear elastic response of the
composite and homogeneous control materials were very similar up to approximately 30 MPa. The me-
chanical responses of the materials significantly differ upon further loading. The homogeneous control
material exhibits a well-defined yield point at approximately 140 MPa, followed by plastic flow accom-
panied by high work hardening. The composite exhibits greater compliance than the homogeneous material
up to the homogeneous material yield point. This feature is explained by the early initiation of plastic flow
in the matrix under the effects of a tensile thermal residual stress. Continued loading of the composite
material results in a steady decrease in tangent modulus up to a weakly defined upper yield point at ap-
proximately 1.35% strain. Beyond this point, the composite exhibits low work hardening relative to the

(a) (b)
350 ' L 1 L . 1o,
1 NiTi-6082-T4 composite
300’; o 0.0 ™\ homogeneous |
= 250 3 o 5; 6082-T4 control ]
o ] P
S 200 - g
bt ] ~ -1.07 F
= q &
g 150_ / - f 3 i
»n 1004 homogeneous Lo §  NiTi-6082-T4
6082-T4 control - composite
504 -2.07 \ -
0'7‘ T T T I -2.51‘1“""'"1"""'"!""7""’
0 1 2 3 4 5 25 50 75 100 125 150
Strain (%) Temperature (deg. C)

Fig. 2. Macroscopic thermal-mechanical measurements (a) room temperature tensile measurements, (b) strain as a function of tem-
perature during the room temperature to 120°C unconstrained heating process.
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homogeneous control material. Finally, the unloading modulus of the composite is significantly less than
that of the homogeneous control.

Following tensile unloading, the test materials remained at room temperature for approximately 1 h
before they were subjected to a 1°C/min, room temperature to 120°C unconstrained heating process. Fig.
2(b) shows that the composite exhibited a very large, nonlinear thermal contraction, while the homoge-
neous control exhibited the expected linear thermal expansion. The composite exhibits a negative strain
versus temperature slope immediately on initiation of heating, with the strain versus temperature slope
steadily increasing to a maximum value at approximately 95°C. Beyond 95°C the strain versus temperature
slope decreases due to the saturation of the fiber shape memory transformation. The size of the com-
pression strain of the composite (x2.2%) clearly indicates that large scale matrix plastic flow was induced
by a powerful shape memory response in the NiTi fiber actuators.

4.2. Input to the model

Table 1 lists input parameter values used for the modeling calculations presented in this section. The
fiber volume fraction of the composite was obtained by quantitative image analysis of a test specimen
central cross section. The model fiber elastic and thermal expansion properties were obtained from Dunand
et al. (1996) and Jackson et al. (1972) respectively. The model NiTi fiber transformation parameters and
aluminum matrix flow model parameters were selected for best fit to the experimental mechanical mea-
surements. Fig. 3 shows that the mechanical description of the composite matrix material included in the
present model adequately matches experimental measurements.

4.3. Analysis of the experiment

The present model treatment begins with the initialization of temperature, external stress, composite
internal stress, and fiber phase content. In the present case, the initial temperature was measured as 20°C,
and the specimen external stress was at all times equal to zero. The composite longitudinal internal stress

Table 1
Model properties

Composite geometric properties
Ve, fiber volume fraction 14.5%
Fiber longitudinal direction X3

Ni-Ti fiber properties

Ay (°C) 31.0
Ca (MPa/°C) 20.0
Sa 140
E; (GPa) 69.0
of (/°C) 11.0 x 10°¢
vf, fiber Poisson’s ratio 0.33

6082-T4 Al matrix properties

E,, (GPa) 69.5

v™ matrix Poisson’s ratio 0.33

o™ (/°C) 23.4 x107°
Matrix plastic flow model, ¢, = A(c — a,)"

oy (0.2%, MPa) 156

A (MPa) 395

n 0.28
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Fig. 3. Comparison between model and experimental homogeneous aluminum matrix stress—strain behavior during the low tempera-
ture prestrain process.

was measured by neutron diffraction as 220 MPa tension in the NiTi fibers and 37 MPa compression in the
aluminum matrix. The remaining transverse and shear internal stress components are assumed trivial. We
may identify the initial phase content of the composite fiber actuators by assuming that all of the residual
strain that exists in the composite after the room temperature unloading process (shown in Fig. 2) is re-
coverable. Therefore, the value of the recoverable strain ¢ is set equal to 4.4% while the initial martensite
fraction, &, is set equal to 1.

The model calculation proceeds with discrete increases in temperature. As the temperature increases the
composite fiber actuators suffer a phase transformation process which converts martensitic phase content
back to the parent austenitic phase content. Fig. 4 shows the martensite fraction versus temperature be-
havior of the NiTi fiber actuators in the model composite during the unconstrained heating process. The
fiber martensite to austenite recovery transformation is strongly shifted to higher temperatures, and spans a
much larger temperature range than would be the case for stress free homogeneous NiTi. The slope of the
plot significantly increases beyond ~75°C, at which point large scale plastic flow occurs in the aluminum
matrix material. Fig. 5 explains the transformation temperature shift by showing the calculated fiber von
Mises equivalent stress versus temperature behavior, with a mesh overlay, the height of which is propor-
tional to transformation intensity. The stress in the fiber strongly increases as the fiber stress—temperature

08 :—
0.6 L

0.4 L

Martensite Fraction

0.2 L

0.0 ] LA L R S B B L DL R BB L BN N
20 40 60 80 100 120
Temperature (deg. C)

Fig. 4. Model martensite fraction versus temperature behavior during the unconstrained (external stress free) heating process. The fiber
martensite to austenite recovery transformation is shifted to higher temperatures by the development of large longitudinal tensile stress
in the actuating NiTi fibers.
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Fig. 5. Model fiber von Mises equivalent stress versus temperature behavior. The mesh height is proportional to the martensite to
austenite shape recovery transformation intensity. The equivalent stress in the fiber strongly increases as the fiber stress—temperature
state enters nontrivial transformation intensity due to the mechanical constraint imposed by the composite matrix.

state enters nontrivial transformation intensity due to the mechanical constraint imposed by the composite
matrix. The increase in fiber equivalent stress in turn necessitates strong increases in temperature before
further phase transformation may occur.

Fig. 6 compares the calculated and measured thermal strain versus temperature behavior of the com-
posite. As the temperature increases, the fiber stress—temperature state enters increasing phase transfor-
mation intensity, resulting in strong increases in fiber longitudinal tensile stress, matrix longitudinal
compressive stress and composite compressive longitudinal external strain. Sufficient temperature brings
the matrix stress state to the point of plastic yield. The composite then exhibits a very unusual, large non-
linear self-thermal-plastic compression response.

Fig. 6 shows that at low and moderate temperatures the quantitative agreement between measured and
calculated results is good, however clear attenuation of the fiber shape memory response is indicated at
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Fig. 6. Comparison between model and experimental composite external thermal strain versus temperature behavior. The composite
external thermal strain temperature gradient increases as the composite aluminum metal matrix suffers plastic yielding. The sharp
disagreement between model and experiment at temperatures above ~100°C clearly indicates a significant attenuation of the fiber
shape memory response.
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temperatures above 100°C. The observed attenuation in the intensity of shape recovery in the experimental
composite may result from the tensile plastic failure of the NiTi actuating fibers as indicated in an earlier
experiment (Armstrong, et al., 1998), or from the development of a significant amount of unrecoverable
strain in the composite actuators during deformation processes.

5. Summary and conclusions

The present work develops a quantitative theory of the self-thermal-plastic response of NiTi shape
memory alloy actuated metal matrix composite materials. Model calculations are compared with existing
experimental data obtained from a testing procedure consisting of an initial room temperature, 5% tensile
elongation process, and a subsequent room temperature to 120°C unconstrained (external stress free)
heating process. This effort supports the following conclusions:

(1) We may construct a general multiaxial description of the phase transformations of NiTi shape
memory alloys by establishing distributed, J, invariant transformation yield functions and an associated
transformation flow rule. The distributed transformation yield functions associate a transformation in-
tensity to each ten dimensional stress—temperature coordinate. The shape memory alloy phase state varies
as the stress—temperature state translates along stress—temperature trajectories which result in forward
penetrations of nontrivial transformation intensity contours.

(2) Consider a specific thermal-mechanical testing procedure consisting of an initial low temperature
tensile elongation process, and a subsequent unconstrained (external stress free) heating process. During the
unconstrained heating process the composite fiber actuators attempt to recover pseudo-plastic strain im-
parted during the room temperature tensile prestrain process. As the temperature increases, the fiber stress—
temperature state enters increasing phase transformation intensity, resulting in strong increases in fiber
longitudinal tensile stress, matrix longitudinal compressive stress and composite compressive longitudinal
external strain. Sufficient temperature brings the matrix stress state to the point of plastic yield. The
composite then exhibits a very unusual, large nonlinear self-thermal-plastic compression response, recov-
ering approximately 2.2% strain.

(3) At low and moderate temperatures the quantitative agreement between measured and calculated
results is good, however clear attenuation of the fiber shape memory response is indicated at temperatures
above 100°C. The observed attenuation in the intensity of shape recovery in the experimental composite
may result from the tensile plastic failure of the NiTi actuating fibers as indicated in an earlier experiment
(Armstrong et al., 1998), or from the development of a significant amount of unrecoverable strain in the
composite actuators during deformation processes.
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